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Green’s-function approach to quantum confinement
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We present a rigorous means of computing the electronic properties of a confined system by perturbing the
electronic properties of an unconfined, bulk system. Our approach focuses on the Green’s function of the
confined system. We explain why it is preferable to consider the confined Green’s function rather than the
confined energy eigenfunctions, and an expression for the change in the Green'’s function produced by quantum
confinement is derived. Finally, we shift our focus to the eigenfunctions and derive approximate results for a
spherical nanocrystal with a Green’s function methodol¢§@163-18208)01515-X]

[. INTRODUCTION Although this major redefinition can occur, if the pertur-
bation is small the physical properties of the system gener-
It makes intuitive sense that the physical properties of ally should only change slightly. This fact is physically ob-
sufficiently large, confined system should be similar to thevious, but it is obscured if we pay excessive attention to the
physical properties of the corresponding unconfined, bullenergy eigenfunctions. It is therefore useful to work with a
system. However, it is not apparent how to express this simiguantity characterizing a system that does not suffer such a
larity quantitatively. The eigenfunctions of the two systemsradical transformation under a small perturbation. One such
are qualitatively different: the eigenfunctions of a confinedquantity is the Green’s function. If the eigenfunctions of a
system are standing waves, while the natural eigenfunctionsystem arey, (r) and the eigenenergies ag, the Green's
of a bulk crystal, calculated using translational symmetriesfunction is defined by
are running Bloch waves. Nevertheless, the measureable

properties of the two systems must be related. In this paper, @(Ec—E,) O(E,—Ep)
we present a formal description of quantum confinementg(r.r’,E)=3 ¢ ()¢ (r') F_—n n F
physics that clarifies this relationship. We treat the confining E-E,—ip E-Eytiy
surface as a source of translational symmetry breaking. Our (1)

analysis provides a quantitative description of how transla- h h h hi : infinitesimal "
tional symmetry breaking perturbs the properties of the bulkWN€re. throughout this paper is an infinitesimal positive
This treatment relies on the use of Green’s functions. Irfiuantity. In th|s_e_quat|orE;_: denotes_th_e_Fer_ml energy and
Sec. I, we explain why it is preferable to focus on Green's® 1S t_he HeaV|S|de_ function. The |nf|n_|te5|mal imaginary
functions rather than energy eigenfunctions when explorinde"™s in the factor in brackets appear in such a way as to
the physical consequences of broken symmetry. In Sec. [1129r€€ with the definition of th_e single-particle Gree.n s func-
we show how to express the Green’s function of a confinedio in many-body theory. It is clear from expressionil)
system as the Green's function of the bulk system plus that the Green’s function is unaltered by a mere redeflnltlpn
perturbation. A series expansion for the perturbation is qe9f the de_g_enerate states of a given gnergy._ On physical
rived in Sec. IV. We consider the impact of translational9rounds, it is reasonable that the Green’s function should be

symmetry breaking on the measureable properties of the connaltered by an Enessenftial _redefinition because the time-
fined system in Sec. V. In Sec. VI, we shift our attention dependent Green’s function is the propagator that advances

from the Green’s function of the confined system to the conStates in timé.

fined wave functions, and we compute approximate eigenen- 1€ Dyson equatidn specifies how an unperturbed
ergies and eigenfunctions for a spherical nanocrystal. Green's functiond, is perturbed togG, under a potential
V(r):

Il. BROKEN SYMMETRY AND GREEN'S FUNCTIONS .- -
_ o o Gp(r,r", E)=Gy(r,r',E)
In quantum mechanics, symmetries in the Hamiltonian
lead to degeneracies in the energy eigenfunctions. Degener-
ate eigenfunctions can be arbitrarily superposed without
jeopardizing their status as eigenfunctions. Thus, in situa-
tions of high symmetry, there is a lot of flexibility in choos- No separate degenerate perturbation theory is required for
ing how to express the eigenfunctions. When we introduce #¢he Green'’s function as is required for the energy eigenfunc-
small perturbation into a highly symmetric situation, typi- tions. This is because of the insensitivity of the Green’s func-
cally degeneracy is lifted, and the flexibility is lost. A major tion to the redefinition of degenerate states: the Green'’s func-
redefinition of the eigenfunctions can result from the perturtion changes in a tidy way under a perturbation, regardless of
bation, as is described by degenerate perturbation theory. how much degeneracy exists in the unperturbed system. As a

+fdSFf/gu(F,F”,E)V(F”)Qp(F”,F’,E)- 2
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result of this tidiness, the Green'’s function is an ideal quaninside the confined system, the confined Green’s function,
tity for describing many physical effects of a symmetry g (v r" E), should satisfy Eq(4) just as the bulk Green’s

breaking perturbation. function does. To describe the condition of confinement, we
simply impose boundary conditions on the confined Green’s
Ill. BROKEN TRANSLATIONAL SYMMETRY function at the surface. Let us express the confined Green’s

AND GREEN'S FUNCTIONS function as the bulk Green’s function plus a confinement

In the case of quantum confinement, the transla’[ionaﬁ"’erturbatlon
symmetry of the system is broken by the presence of a sur- R . R
face. Degenerate Bloch eigenfunctions of the unconfined, Ge(r,r' JE)=Gy(r,r’" ,E)+AG(r,r' E). (6)
bulk system are superposed into qualitatively different stand-
ing wave eigenfunctions. To clarify the relationship betweenSince bothG, and G, satisfy Eq.(4), the perturbation obeys
the physical properties of a confined system and the physicahe homogeneous equation
properties of an unconfined system, we ignore the radical
change in the wave functions and focus instead on the
Green'’s function. This was the direction taken by Peierls,
who employed the Green’s function to justify the use of
periodic boundary conditiorts. If we demand that the confined Green’s function vanish at
Let us refer to the Green’s function of an unconfined, bulkthe surface, Eq(6) requires that
system agj,. To describe the condition of confinement, it is
natural to look for some perturbation_ potentid],that bre_aks AG( Fs rE)=— gb(Fs ' E) (8)
translational symmetry. The potential would determine the
confined Green'’s function from the unconfined Green’s func- o )
tion through the Dyson equation. Unfortunately, such an apfor surface points. We have showr’1 that translational sym-
proach proves to be problematic. The confined system’s pdT€try breaking changes the Green's function by a perturba-
tential and the unconfined system’s potential differtion. The pertg_rbatlon satisfies dlff_erentlal EQY)_ with
everywhere outside the confined system; the integral in th@oundary conditior(8). Now our task is to solve this equa-

Dyson equation diverges. tion. . . :
It turns out to be more fruitful to take another tact by ~ Before undertaking this problem, we point out that the

pursuing a boundary value approach, adapting the work OHoundary conditiorﬁ8} captures the essential physics of con-
electromagnetic waves in a cavity of Ref. 4. To describe thidinément. However, it is possible to extend the formalism to
approach, we first consider the case of bulk electrons. Thiiclude more subtle effects such as charge redistribution at
electronic eigenfunctions of a bulk system satisfy the effectn€ surface of a confined system. This can be achieved by

(H,—E)AG(r,r’,E)=0. 7

tive one-particle Schidinger equation perturbing  the ~ many-body ~ Green's  function
iGp(r,t,r" ") =(W,|T{y(r,t)(r',t')}|¥,) and using the
Hyg(r)=[— V2+Vp(r) ] (r)=Eu(r), (3) fact that it satisfies the differential equatfon

with periodic boundary conditions. Here, we adopt atomic R ..

units. The solution to this equation can be obtained by ex(E+ VZ—Ub(f))gb(r.r',E)

ploiting the translational symmetries of the bulk system. The

eigenfunctions take the form of Bloch waves, ¢, labeled =8(r— F’)+f d3r"S* (1" E;Gp)Go(r".FE).  (9)
by a band indexx and a crystal momentut The eigenen-

ergies are given by a band-structure functE;r;(IZ). In the
bulk crystal, electrons occupy eigenstates up to a Fermi en-  |V. FORMAL SOLUTION FOR CONFINEMENT
ergy Er . The energy-dependent bulk Green'’s function satis- GREEN’S FUNCTION

fies the equation
a We derive a solution to Eq7) by continuing to adapt the

(Hp— E)gb(F,F’ E)=—8(r—r"). @) work of Ref. 4. We write the perturbatiahg in the form of
a layer potential
In terms of the Bloch eigenfunctions of the system, the
Green'’s function takes the form J
) Ag(F,F',E)zfdz&—gb(F,&,E)M(&,F',E) (10)
® (Er—Eq(K) Ma

Go(rar " BE) =X kthni(1) ¥, (1) E-E.K—in

whereu(a,r’,E) is an unknown source density. In this two-
dimensional integral& is a vector that ranges over all points
: (5) on the surface, and, denotes the normal to the surfacenat

Written in this integral formAG(r,r’,E) will satisfy Eq.(7)
To describe the Green's function of a confined system, weor r inside the surface, regardless @f°

assume that the Hamiltonian in the interior of the confined We therefore need 0n|y impose the boundary condition
system is similar to that of the bulk system. Thus, for (8). We require that

+®G4@—Ea
E—E (K +iy
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. . .- - -, + which provides a formal solution fokG via Eq. (10). Iter-
lim j d aaTgb(f-a,E)M(a-r B)=—Gp(rs,r’,E), ating Eq.(17), and recalling definitior{6), we find that
r—rg @ N

(11 (r,a,E)
—9G

gl 2 _)é’gb
- _ AG(rr BE)=2| d°a 5
whererg is a point on the surface. We cannot simply set n
equal torg in the:ntggral .on the left hand S|de*of tfns equa- - 25’9%(;'&"5) 07%(5,5,5)
tion, because&,(rs,a,E) is poorly behaved ag—r. To +2°| dadg

o(a,r’,E)

a

/b . an, an
evaluate the limit, we first show that P
X Gy(B,r'",E)
gb(F,F',E):—m+H(F,F',E), (12 e (19
wr—r
This is a formal expression for the change in the Green’s
WhereH(F,F’,E) is finite atr=r". function arising from translational symmetry _breaking. It
We begin with the differential Eq(4). Writing G, in the ~ may be regarded as analogous to the usual iterated Dyson
form (12), it follows that satisfies the equation equation, but with an “electron-boundary” interaction oc-
curring only at the surface.
(Hp— EYH(F,F" E)=[ V() — E]%_ (13) V. PHYSICAL EFFECTS OF TRANSLATIONAL
4alr—r’| SYMMETRY BREAKING

Using the definitior(5) of the Green’s function, we can write Using AG, any electronic property that is expressable in
H in the form terms of the Green’s function can be written for the confined
system as the corresponding bulk property plus a perturba-

- - .. . 1 tion. We illustrate this with two examples.
H(r,r' E)= —J dr"Gu(r,r" E)[Vp(r")— E]m The charge density in a confined structure is giveh by
(14 . dE iE -
pC(r):z ﬁe ngc(rvrvE) (19)
- 1 N 1 . . .
=f dr" ————[Vp(r")—E] —=—— Using Eq.(6), we can write this as
4ar|r—r"| 4arir”—r’|

- dE . - -
L. N 1 pc(r)=2f ﬁe'E”[gb(r,r,EHAg(r,r,E)]
—J dr”H(r,r”,E)[Vb(r”)—E]ﬁ

mr"—=r’ - >

=pp(r)+Ap(r). (20)
=7(r,r' ,E)+ Jr,r',E). On physical grounds, we expect thip(r) should be small
. deep inside a confined system and should grow in magnitude

By inspecting its definition, we can confirm thEfr,r' ,E) is  near the surface.
finite atr=r’. To show thaU(F,F’ ,E) is also well behaved For opFicaI prope_rties, Fhe imaginary part of the dieleptric
atr=r’, we note that it satisfies the differential equation ~Cconstant is a quantity of interest. In terms of energy eigen-
functions, it is given by

(H,—E)J(r,r' ,E)=—[Vp(r)—E]Z(r,r',E). (15 2o

2
1 .
L _ e?)(w):(—m ) rillfle-pl)Fo(E—Ei—w),
SinceZ is finite atr=r', generically7 should be too. Thus, w

> - 21
‘H=7+ J should be well behaved at=r', as asserted. i ] ) - @
Now that we have characterized the singularitgin we  Wheref denotes a final confined eigenfunctiordenotes an
appeal to the identify initial confined eigenfunctiors is a photon polarization vec-
tor, andﬁ is the momentum operator, aMlis the nanocrys-
tal volume. In terms of the Green’s function, we can write
€®(w) in the form

9 —1
im —
0= 92 AT (X2 +y?+27%)

L. i . L 2
From this identity and from Eq(12), it follows that limit G(Cz)(w):ReH%) E f d3Fd3F’dEidEfé-5gC(F,F’,Ei)

1
== 58008(y). (16

(11 is \
1 - 220 L= - - -, X&-p' G, Eq) S(E;—E;— w) (22)
_Elu,(rs,r ,E)+ d aaTgb(rs,a,E),u,(a,r ,E) o\, Ef f i .
- - Here, p’ is a momentum operator that differentiates with
:_gb(rS!rllE) (17) P P

respect tor’. The spatial integrals proceed over the interior
where the first term on the left hand side arises because @ff the confined system only. Using Eq$) and (22), it is
the & function. This is a “Dyson” type equation foj, straightforward to arrive at an expression of the form
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€ (w)=e?(w)+Ae?(w), (23)  ish on the surface of the confined system, we arrive at

where €{?) is the bulk function and\ e gives the change o
due to confinement effects. In a semiconductor nanocrysta@(r*): _J' gb(F,F',E)_dZPZJ gb(F,F’,E)M(F’)dZF’,
for instance, we expect the terire(®)(w) to be negative just an’

above the energy of the bulk gap. This will suppress absorp- (25
tion and increase the size of the gap, which is a typical quan-
tum confinement effect. where the integral is taken over the surface. In this equation,
the factor/L(F’) should be regarded as an unknown surface
VI. CONFINED WAVE FUNCTIONS density producing the wave function on the interior. For only
AND EIGENENERGIES special values ofE—the eigenenergies of the confined

. _ . system—is it possible to find a nonzegiothat gives rise to a
So far in this paper, we have stressed the utility of thenonzerg wave functiog that manages to vanish on the sur-
Green’s function over the eigenfunctions in describing theace. At these special values B once the propep has
effects of quantum confinement. There are instances, howseen found, Eq(25) gives the eigenfunctiogp.

ever, in which it is desirable to determine the eigenfunctions

\ _ S|t appears from Eq(5) that Gy(r,r’,E) depends upon
of a confined structure. Even for this purpose, a Green'ggenstates with all energies. However, for a bulk system, the
function approach is of use. The wave functions of a con-

fined structure can be regarded as a superposition of buRm overk states in the equation can be turned into an inte-

Bloch eigenfunctions that cancel at the surface. In previougral over energies and an '_”‘69“"" over states of constant

papers, we have successfully constructed this superpositiqq{]ergy' IfE is among trle e|ger1energ|e.s B, then the

by first forming a basis of Wannier functiohsHere, we integrand has poles &,(k)=E=*i7. The integral over en-

determine the proper superposition of Bloch eigenfunctiongrgies can then be contracted to integrals ardemdy in the

using the bulk Green’s function. complex plane. Hence, despite appearancesggfer’,E)

The electronic wave functions of the confined system satinvolves only states of enerdy. Thus, the integra(25) is

isfy Eq. (3) with the requirement tha#s vanish on the sur- really just a way of expressing as a superposition of bulk

face. We multiply Eq(3) by G,,, multiply Eq.(4) by #, and  states of energi.

then subtract. Integrating the difference over the interior of Equation (25) gives an efficient way to determine the

the confined system, we obtain eigenstates of a confined system because it is a two-
dimensional integral equation that replaces the usual three-
dimensional Schrodinger equation in three dimensions. A

N PP - s, 5 2143 numerical solution of Eq(25) is currently being pursued for
'/’(r)_f [p(r)VEGu(r,r',E) = Gy(r,r ", E)VE(r)]1d™r ", real systems. However, it is also possible to derive an ap-
(24  proximate solution to Eq(25) analytically for a spherical
nanocrystal.

. We begin by computing an approximation to the bulk
wherer is a point in the interior of the confined system. Green’s function5). Let us write the Bloch waves in E(b)
Using the divergence theorem, and the fact thamust van-  as a superposition of localized Wannier functiéns:

.- 1 ee L -, IR
Go(r,r" ,E)=—3, 3ge*Ra(r—-R)Sge ®RaX(r —R)

O(Er—En(k))  O(E(K)—Ep)
N +

E-E,(K)—in E—-E,(K+iy

Vv - o - o d®k o s,
=—3 rpa,(r—-Ra*(r-RrR)| ——=ekRR)
N =n R A(T—R)an( ) 52(2m)?

O(Eg—Eq(K)) . O (En(K)—Eg)
E-E,(K)—in E—-E,(K+iy

@(EF—En<|El>)+ O (Eq(|k|)—Ep)

3
mf LI - B
B E_En(|k|)_i7] E_En(|k|)+i77

z(2m)®

(26)

( 2 ) (e—ikf—m o
— — @(EF—E)—a—ﬂ@)(E_EF))
dE,(k)/dk 4g|r—r’| 4mlr—r'| E,(k)=E
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In this equationN refers to the number of unit cells in the 29 ' - '
bulk crystal and/ refers to the volume of the bulk crystal. In

the third line, the Wannier functions are assumed to be per-
fectly localized. The bands are also assumed to be spheri-

caIIy symmetrical, SO thEEn(E) = En(| |2|) In the final line, it 24 + ® Photoluminescence Experiment 9

is assumed that the surfaé&=E,(|k|) is a sphere in the e e L
Brillouin zone satisfied by a single band only. We can now . —-- Green Function Calculation - X
insert our expression fag, into Eq. (25). The resulting in- AN
tegral equation foiy is actually closely related to the differ- 19k |
ential equation obtained in the effective mass AN
approximatior?. In both cases, one assumes that the Wannier
functions are localized and solves for what turns out to be a
sort of envelope function.

With our approximation foiG,, the solution to Eq(25) 1.4 1 . o T~ p .
can be found by inspection for a spherical nanocrystal. For

each band, we guess that. can take the form T~ RN

w0 =Y, m(r") (27) 0 L ]

for any choice ol andm. The corresponding wave function

is found to involve spherical Bessel functions:

() ~1(kr)Y, m(F). If the value ofk, satisfiesj,(k;a)=0,

wherea is the radius of the nanocrystal, thénvanishes at 0_4150 o~ =0 ~

the Elanocrystal surface as required. The energyy ois Nanocrystal Radius (A)

E.(|k|=k), where, as we recall, all bands have been as-

sumed to be spherically symmetrical. FIG. 1. Energy gaps of InAs nanocrystals. Green’s function cal-
In particular, the highest occupied electronic state and theulations show better agreement with experiment than effective

lowest unoccupied electronic state are found to be propormass calculation. See text for explanation of difference between

tional to jo[ (#/a)r]. The energies of these states are thereiwo Green's function calculations.

fore E,(|k|= m/a) andE.(|k|= w/a), respectively, where

refers to the valence band of the bulk andefers to the and the Green’s function of a bulk system. We presented a
conduction band. The resulting energy gapformal expression for the perturbation in the Green’s func-
Eq(2) =E(|k|=m/a)—E,(|k|=/a) is plotted versusm in  tion due to quantum confinement effects, and then consid-
Fig. 1 for InAs nanocrystals. In this plot, we took the spheri-ered the measureable consequences of this perturbation. An

cally symmetrized band functio&,(|k|) to be the actual approximatg expression for the confined'eig'enfunctiops and
band functionEn(IZ) evaluated a distancb?l along theX eigenenergies was derived as well. Applications of this for-

direction. Then, we repeated the calculation choosingL.the Malism to real systems are in progress. The development
direction instead. Both calculations are shown, with a comPresented here could find use in the study of confined

parison to an effective mass computafiand to experimen- Phonons and photons as well as electrons.

tal data'® Our calculations are in better agreement with ex-

periment than the effective mass treatment. This is because
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